

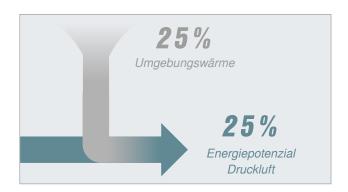
Wärmerückgewinnungs-Systeme

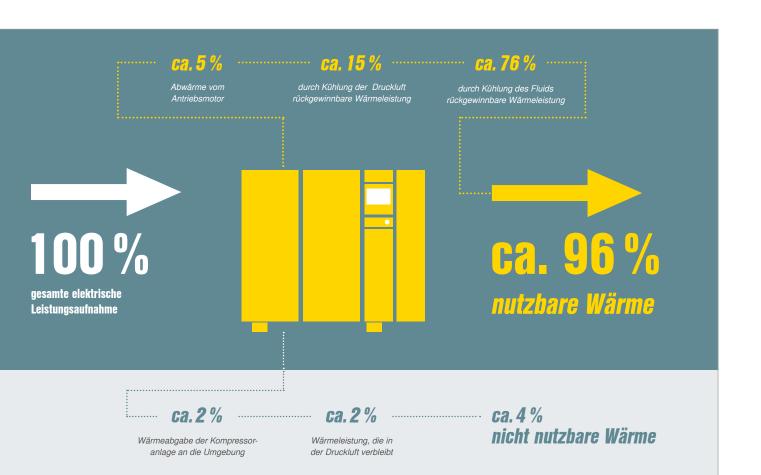
für Warmluft- und Warmwasseranwendungen

Warum Wärme zurückgewinnen?

Eigentlich müsste die Frage lauten: Warum nicht? Schließlich wandelt jeder Schraubenkompressor und jedes Gebläse die ihm zugeführte elektrische Antriebsenergie zu nahezu 100 Prozent in Wärmeenergie um.

Von dieser Energie lassen sich bis zu 96 Prozent zum Beispiel für Heizzwecke zurückgewinnen. Das senkt den Primärenergieverbrauch und verbessert die Gesamtenergiebilanz erheblich.


Wärme im Kompressor


Schraubenkompressoren, Nachverdichter und Gebläse wandeln die zugeführte elektrische Antriebsenergie zu nahezu 100 Prozent in Wärmeenergie um. Das Wärmefluss-Diagramm (unten) zeigt, wie sich diese Energie im Kompressorsystem verteilt und wieviel davon nutzbar ist.

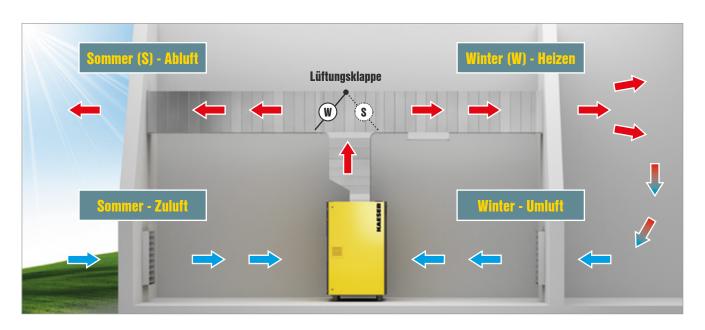
Etwa 96 Prozent stehen zur Wärmerückgewinnung bereit, zwei Prozent verbleiben als Wärme in der Druckluft und zwei Prozent werden als Strahlungswärme abgegeben. Woher aber kommt dann die nutzbare Energie in der Druckluft?

Die Antwort ist einfach und vielleicht überraschend: Während der Verdichtung wandelt der Kompressor die elektrische Antriebsenergie in Wärmeenergie um. Gleichzeitig lädt der Kompressor die von ihm angesaugte Luft zusätzlich mit einem Energiepotenzial auf. Dieses entspricht etwa 25 Prozent der elektrischen Leistungsaufnahme des Kompressors. Nutzbar wird es erst, wenn die Druckluft sich am Ort ihres Verbrauchs wieder entspannt

und dabei ihrer Umgebung Wärmeenergie entzieht. Je nach Druck- und Leckageverlusten im Druckluftsystem lässt sich mehr oder weniger dieser Energie nutzen.

Spart Geld und schont die Umwelt

Diettenwärmeteuseher Susteme	Kompressorgröße					
Plattenwärmetauscher-Systeme	"klein"	"mittel"	"groß"			
Kompressortyp	SM 16	BSD 83	FSD 475			
Nennleistung Antriebsmotor	9 kW	45 kW	250 kW			
Einsparpotenziale pro Jahr bei Heizöl	2.570 €	27.110 €	136.565 €			
	4.671 kg CO ₂	49.285 kg CO ₂	248.274 kg CO ₂			


Minimieren des Primärenergieverbrauchs beim Heizen

Moderne Schraubenkompressoren, Nachverdichter und und Gebläse eignen sich als Komplettanlagen hervorragend zur Wärmerückgewinnung.

Insbesondere die direkte Nutzung der Abwärme über ein Abluftkanalsystem erschließt das hohe Wiederverwertungspotenzial von 96 Prozent der eingesetzten Energie.

Das gilt unabhängig davon, ob es sich um einen Kompressor mit Fluideinspritzkühlung, einen trocken verdichtenden Schraubenkompressor, einen Nachverdichter oder ein Gebläse handelt.

Heizen mit Warmluft

Mit der erwärmten Kühlluft des Kompressors lassen sich benachbarte Räume sehr einfach und effektiv über Lüftungskanäle beheizen. So lassen sich bis zu 96 Prozent der einem Kompressor zugeführten elektrischen Leistung zur Raumoder zur Prozessheizung nutzen. Beim Nutzen der Abwärme zur Warmluftheizung leiten Abluftkanäle die erwärmte Kühlluft gezielt an die Orte, die zu beheizen sind. So lassen sich beispielsweise Lagerräume oder Werkstätten kostenlos mit Kompressorabwärme beheizen. Durch eine Lüftungsklappe wird die warme Kühlluft im Sommerbetrieb (S) nach draußen und im Winterbetrieb (W) in die zu beheizenden Räume geleitet.

Minimieren des Primärenergieverbrauchs bei Prozess-, Heiz- und Brauchwassererwärmung

Warmes Heiz- und Brauchwasser bis zu $+70\,^{\circ}$ C, bei Bedarf auch bis zu $+85\,^{\circ}$ C, lässt sich mit Wärmetauscher-Systemen aus der Kompressor-Abwärme erzeugen.

Zum Erwärmen von Heiz- und Brauchwasser sind die Plattenwärmetauscher-Systeme PTG vorgesehen. Dies ist die Standard-Anwendung zum Nutzen von Abwärme.

Speziell abgesicherte Wärmetauscher kommen zum Einsatz, wenn kein weiterer Wasserkreislauf zwischengeschaltet ist, und höchste Anforderungen an die Reinheit des zu erwärmenden Wassers gestellt werden, wie dies zum Beispiel bei Reinigungswasser in der Lebensmittelindustrie der Fall ist.

Mit den Wärmetauschersystemen lässt sich aus der Kompressorabwärme Warmwasser mit Temperaturen bis zu +70°C erzeugen. Höhere Temperaturen sind individuell möglich (auf Anfrage).

Wärme in Heizsysteme einspeisen

In Warmwasser-Heizsystemen und Brauchwasseranlagen lassen sich bis zu 76 Prozent der einem Kompressor zugeführten elektrischen Leistung nutzen. Dies reduziert den Primärenergiebedarf zum Heizen erheblich.

Plattenwärmetauscher PTG

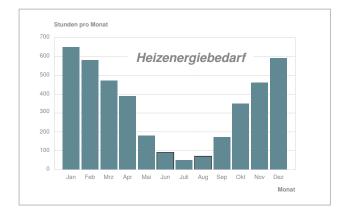
Wo es gilt, mit der Abwärme von Schraubenkompressoren Heiz- und Brauchwasser zu erwärmen oder Prozesswärme zu erzeugen, sind hochwertige Plattenwärmetauscher aus Edelstahl die erste Wahl.

Ausstattung für Schraubenkompressoren

Warmluft-Wärmerückgewinnung

Bei allen KAESER-Schraubenkompressoren ist der Anschluss von Abluftkanälen vorgesehen. Die Kanäle werden bauseits montiert. Mit der erwärmten Kühlluft lassen sich Räume beheizen. Mögliche Anwendungsgebiete: Trocknungsprozess, Heizen von Hallen und Gebäuden, Torschleieranlagen, Vorerwärmung von Brennerluft.

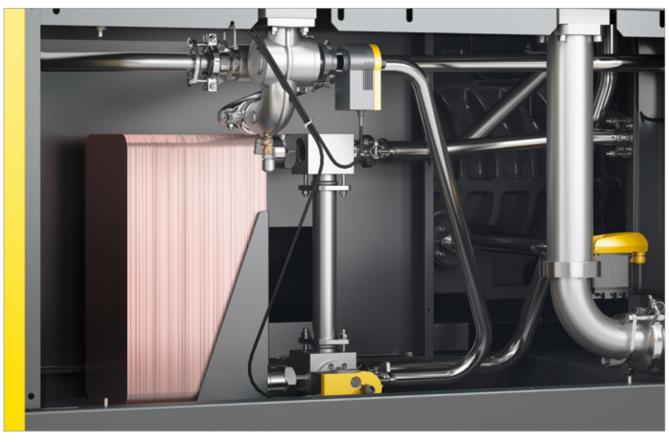
Plattenwärmetauscher-System PTG


Schraubenkompressoren ab der Baureihe SM (ab 5,5 kW) lassen sich mit PTG-Systemen ausrüsten. Je nach Größe der Anlage wird das PTG-System in den Kompressor eingebaut oder extern installiert. Mögliche Anwendungsgebiete: Einspeisen in Zentralheizungen, Wäschereien, Galvanik, allgemeine Prozesswärme.

Mit speziell abgesicherten Wärmetauschern: Reinigungswasser in der Lebensmittelindustrie, Schwimmbeckenaufheizung, Warmwasser für Dusch- und Waschräume.

Rohrbündelwärmetauscher

Bei ungenügender Kühlwasserqualität (z.B. kalkhaltiges, schmutziges Kühlwasser oder salzhaltiges Seewasser) sind wahlweise spezielle Rohrbündelwärmetauscher verfügbar. Unsere Druckluft-Fachleute beraten Sie, welche Ausführung für Ihre spezielle Anwendung die richtige Wahl ist.



Wärme – nicht nur im Winter notwendig

Dass im Winter geheizt werden muss, versteht sich von selbst. Allerdings ist auch in den anderen Monaten mehr oder weniger Heizleistung erforderlich, z.B. für die Versorgung mit Warmwasser. Somit besteht im Jahr ein ungefährer Heizenergiebedarf von 4.000 Stunden.

Abb.: Schema Wärmerückgewinnung; Anwendungen für Trinkwasser nur in Verbindung mit speziell abgesicherte Sicherheitswärmetauscher (SWT) möglich

 $Abb.: Innenaufbau\ eines\ Kompressors-System\ aus\ Plattenwärmetauscher,\ Thermoventil\ und\ kompletter\ Verrohrung$

Technische Daten für ...

Warmluft

Тур	bei max.	Motor-		ıl verfüg-	nutzbare	Kühl-	Heiz	öl-Einsparp	otentia	al	Erdgas-Einsparpotential			
	Über- druck	nenn- leistung		Värme- tung	Warmluft- menge	luftauf- heizung	Heizöl	CO ₂		zkosten- sparung	Erdgas	CO ₂		eizkosten- insparung
	bar	kW	kW	MJ/h *)	m³/h	K (circa)	1	kg	•	€/Jahr	m³	kg		€/Jahr
SX 3 SX 4 SX 6 SX 8	8	2,2 3 4 5,5	2,7 3,4 4,4 6,0	10 12 16 22	1000 1000 1000 1300	8 10 13 14	608 766 992 1.352	1.658 2.089 2.705 3.687	00 h/a	912,- 1.149,- 1.488,- 2.028,-	504 635 822 1.120	1.008 1.270 1.644 2.240	00 h/a	756,- 953,- 1.233,- 1.680,-
SM 10 SM 13 SM 16	8	5,5 7,5 9	6,8 9,1 11,1	25 33 40	2100	10 13 16	1.532 2.051 2.501	4.178 5.593 6.820	Einsparpotential bei 2.000	2.298,- 3.077,- 3.752,-	1.270 1.699 2.073	2.540 3.398 4.146	Einsparpotential bei 2.000	1.905,- 2.549,- 3.110,-
SK 22 SK 25	8	11 15	13,2 16,5	48 59	2500 3000	16 17	2.975 3.718	8.113 10.139	sparpoter	4.463,- 5.577,-	2.465 3.081	4.930 6.162	sparpoter	3.698,- 4.622,-
ASK 28 ASK 34 ASK 40	8	15 18,5 22	18,4 22,8 26,8	66 82 96	4000 4000 5000	14 17 16	4.147 5.138 6.040	11.309 14.011 16.471	튭	6.221,- 7.707,- 9.060,-	3.436 4.258 5.005	6.872 8.516 10.010	뜳	5.154,- 6.387,- 7.508,-
ASD 35 ASD 40 ASD 50 ASD 60	8,5	18,5 22 25 30	19,9 23,5 28,0 34,6	72 85 101 125	3800 3800 4500 5400	16 19 19 19	8.969 10.592 12.620 15.595	24.458 28.884 34.415 42.528		13.454,- 15.888,- 18.930,- 23.393,-	7.432 8.777 10.458 12.923	14.864 17.554 20.916 25.846		11.148,- 13.166,- 15.687,- 19.385,-
BSD 65 BSD 75 BSD 83	8,5	30 37 45	35,2 43,4 52,0	127 156 187	6500 8000 8000	16 16 20	15.865 19.561 23.437	43.264 53.343 63.913		23.798,- 29.342,- 35.156,-	13.147 16.209 19.421	26.294 32.418 38.842		19.721,- 24.314,- 29.132,-
CSD 90 CSD 110 CSD 130	8,5	45 55 75	51 61 74	184 220 266	8000 9500 11000	19 19 20	22.986 27.493 33.352	62.683 74.973 90.951		34.479,- 41.240,- 50.028,-	19.048 22.782 27.638	38.096 45.564 55.276		28.572,- 34.173,- 41.457,-
CSDX 145 CSDX 175	8,5	75 90	84 101	302 364	11000 13000	23 23	37.860 45.522	103.244 124.138	4.000 h/a	56.790,- 68.283,-	31.373 37.722	62.746 75.444	4.000 h/a	47.060,- 56.583,-
DSD 145 DSD 175 DSD 205 DSD 240	9 8,5 8,5 8,5	75 90 110 132	82 96 120 145	295 346 432 522	11000 13000 17000 20000	22 22 21 22	36.958 43.268 54.085 65.353	100.784 117.992 147.490 178.218	Einsparpotential bei	55.437,- 64.902,- 81.128,- 98.030,-	30.626 35.854 44.818 54.155	61.252 71.708 89.636 108.310	Einsparpotential bei	45.939,- 53.781,- 67.227,- 81.233,-
DSDX 245 DSDX 305	8,5	132 160	143 174	515 626	21000	20 25	64.451 78.423	175.758 213.860	Einsp	96.677,- 117.635,-	53.408 64.986	106.816 129.972	Einsp	80.112,- 97.479,-
ESD 375 ESD 445	8,5	200 250	221 254	796 914	30000 34000	22 22	99.607 114.480	271.628 312.187		149.411,- 171.720,-	82.540 94.865	165.080 189.730		123.810,- 142.298,-
FSD 475 FSD 575	8,5	250 315	274 333	986 1199	40000	21 25	123.494 150.086	336.768 409.285		185.241,- 225.129,-	102.334 124.370	204.668 248.740		153.501,- 186.555,-
HSD 662 HSD 722 HSD 782 HSD 842	8,5	360 400 450 500	21 24 25 28	76 86 90 101	10000	6 7 7 8	9.465 10.817 11.268 12.620	25.811 29.498 30.728 34.415		14.198,- 16.226,- 16.902,- 18.930,-	7.843 8.964 9.337 10.458	15.686 17.928 18.674 20.916		11.765,- 13.446,- 14.006,- 15.687,-

[&]quot;) 1 MJ/h = 1 kW x 3,6

Einspar-Rechenbeispiel für ASD 50

für Heizöl			
maximal verfügbare Wärmeleistung:	28,0 kW		
Heizwert je Liter Heizöl:	9,861 kWh/l		
Wirkungsgrad Heizöl-Heizung:	90%		
Preis je Liter Heizöl:	1,50 €/I		
Voeteneinenerung	28,0 kW x 4.000 h/a	v 1 E0 E/I	- 10 020 £ pro Johr
Kosteneinsparung:	0,90 x 9,861 kWh/l	x 1,50 €/l	= 18.930 € pro Jahr

für Erdgas	
maximal verfügbare Wärmeleistung:	28,0 kW
Heizwert je m³ Erdgas:	10,2 kWh/m³
Wirkungsgrad Erdgas-Heizung:	105%
Preis je m³ Erdgas:	1,50 €/m³
Kosteneinsparung:	28,0 kW x 4.000 h/a x 1,250 €/m³ = 15.686 € pro Jahr
Rosteriemsparung.	1,05 x 10,2 kWh/m³ = 15.000 € pro Janii

Hinweis: Die Einsparpotentiale beziehen sich auf betriebswarme Kompressoren bei maximalem Überdruck (8,0/8,5/9,0 bar). Bei anderen Drücken können sich andere Werte ergeben.

... Schraubenkompressoren

Warmwasser

Тур	bei max. Über-			Platzierung des PTG-	Heiz	:öl-Einsparp	oten	tial	Erdg	as-Einspar _l	ooten	tial			
	druck	leistung				System		Heizöl	CO ₂		izkosten- nsparung	Erdgas	CO ₂		izkosten- nsparung
	bar	kW	kW	MJ/h *)	(ΔT 25 K) m ³ /h	(ΔT 55 K) m ³ /h	int./ext.	- 1	kg		€/Jahr	m³	kg		€/Jahr
SM 10 SM 13 SM 16	8	5,5 7,5 9	4,5 6,2 7,6	16 22 27	0,16 0,21 0,29	0,07 0,10 0,13	extern	1.014 1.397 1.713	2.765 3.810 4.671	i 2.000 h/a	1.521,- 2.096,- 2.570,-	840 1.158 1.419	1.680 2.316 2.838	i 2.000 h/a	1.260, 1.737, 2.129,
SK 22 SK 25	8	11 15	9,4 12,0	34 43	0,32 0,41	0,15 0,19	extern	2.118 2.704	5.776 7.374	ential be	3.177,- 4.056,-	1.755 2.241	3.510 4.482	ential be	2.633, 3.362,
ASK 28 ASK 34 ASK 40	8	15 18,5 22	13,6 16,9 19,8	49 61 71	0,47 0,58 0,68	0,21 0,26 0,31	intern	3.065 3.808 4.462	8.358 10.384 12.168	Einsparpotential bei	4.598,- 5.712,- 6.693,-	2.540 3.156 3.697	5.080 6.312 7.394	Einsparpotential bei	3.810,- 4.734,- 5.546,-
ASD 35 ASD 40 ASD 50 ASD 60	8,5	18,5 22 25 30	15,2 18,1 21,6 26,6	55 65 78 96	0,52 0,62 0,74 0,92	0,24 0,28 0,34 0,42	intern	6.851 8.158 9.735 11.989	18.683 22.247 26.547 32.694		10.277,- 12.237,- 14.603,- 17.984,-	5.677 6.760 8.067 9.935	11.354 13.520 16.134 19.870		8.516,- 10.140,- 12.101,- 14.903,-
BSD 65 BSD 75 BSD 83	8,5	30 37 45	27,1 33,5 40,1	98 121 144	0,93 1,15 1,38	0,42 0,52 0,63	intern	12.214 15.099 18.073	33.308 41.175 49.285		18.321,- 22.649,- 27.110,-	10.121 12.512 14.977	20.242 25.024 29.954		15.182, 18.768, 22.466,
CSD 90 CSD 110 CSD 130	8,5	45 55 75	39,9 48,8 57,8	144 172 211	1,37 1,65 1,99	0,62 0,75 0,91	intern	17.983 21.544 26.051	49.040 58.750 71.041		26.975,- 32.316,- 39.077,-	14.902 17.852 21.587	29.804 35.704 43.174		22.353, 26.778, 32.381,
CSDX 145 CSDX 175	8,5	75 90	66 79	238 284	2,30 2,70	1,03 1,24	intern	29.747 36.606	81.120 97.098	4.000 h/a	44.621,- 53.409,-	24.650 29.505	49.300 59.010	4.000 h/a	36.975, 44.258,
DSD 145 DSD 175 DSD 205 DSD 240	9 8,5 8,5 8,5	75 90 110 132	61 71 88 107	220 256 317 385	2,10 2,40 3,00 3,70	0,96 1,11 1,38 1,68	intern	27.493 32.000 39.662 48.226	74.973 87.264 108.158 131.512	Einsparpotential bei	41.240,- 48.000,- 59.493,- 72.339,-	22.782 26.517 32.866 39.963	45.564 53.034 65.732 79.926	Einsparpotential bei	34.173,- 39.776,- 49 299,- 59.945,-
DSDX 245 DSDX 305	8,5	132 160	105 129	378 464	3,60 4,40	1,64 2,04	intern	47.324 58.142	129.053 158.553	Einsp	70.986,- 87.213,-	39.216 48.179	78.432 96.358	Einsp	58.824,- 72.269,-
ESD 375 ESD 445	8,5	200 250	162 187	583 673	5,60 6,40	2,54 2,93	intern	73.015 84.283	199.112 229.840		109.523,- 126.425,-	60 504 69 841	121.008 139.682		90.756, 104.762,
FSD 475 FSD 575	8,5	250 315	202 246	727 886	7,00 8,50	3,16 3,85	intern	91.043 110.874	248.274 302.353		136.565,- 166.311,-	75.444 91.877	150.888 183.754		113.166, 137.816,
HSD 662 HSD 722 HSD 782 HSD 842	8,5	360 400 450 500	291 323 348 374	1048 1163 1253 1346	10,00 11,10 12,00 12,90	4,56 5,06 5,45 5,86	intern	131.156 145.579 156.847 168.565	357.662 396.994 427.722 459.677		196.734,- 218.369,- 235.271,- 252.848,-	108.683 120.635 129.972 139.683	217.366 241.270 259.944 279.366		163.025,- 180.953,- 194.958,- 209.525,-

[&]quot;) 1 MJ/h = 1 kW x 3,6

Einspar-Rechenbeispiel für ASD 50

für Heizöl			
maximal verfügbare Wärmeleistung:	21,6 kW		
Heizwert je Liter Heizöl:	9,861 kWh/l		
Wirkungsgrad Heizöl-Heizung:	90 %		
Preis je Liter Heizöl:	1,50 €/I		
Kostonoinanarungu	21,6 kW x 4.000 h/a	v 1 E0 E/I	- 14 602 £ pro Johr
Kosteneinsparung:	0,9 x 9,861 kWh/l	x 1,50 €/l	= 14.603 € pro Jahr

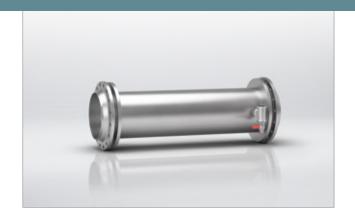
für Erdgas			
maximal verfügbare Wärmeleistung:	21,6 kW		
Heizwert je m³ Erdgas:	10,2 kWh/m³		
Wirkungsgrad Erdgas-Heizung:	105%		
Preis je m³ Erdgas:	1,50 €/m³		
. Kaatanainananum.	21,6 kW x 4.000 h/a	v 1 E0 C/m3	10 101 C mag laba
Kosteneinsparung:	1,05 x 10,2 kWh/m ³	x 1,50 €/M³	= 12.101 € pro Jahr

Hinweis: Die Einsparpotentiale beziehen sich auf betriebswarme Kompressoren mit 8 / 8,5 / 9 bar max. Überdruck. Bei anderen Drücken können sich andere Werte ergeben.

Wärmerückgewinnungssysteme für ...

Warmluft

Bei dem Air Cooled Aftercooler (ACA) handelt es sich um einen Luft/Luft-Wärmetauscher. Die zu kühlende Prozessluft wird im Kreuzstrom durch Umgebungsluft gekühlt, die sich durch den Wärmeaustausch erwärmt. In puncto Mediumversorgung bedarf es nur eines elektrischen Anschlusses für den Ventilator. Die in den Kühler eintretende Prozessluft kann beispielsweise bei +20°C Umgebungstemperatur von +150°C auf +30°C abgekühlt werden. Gerade im Bereich der Schüttgutförderung ist der ACA von Vorteil, wenn es gilt, temperaturempfindliche Produkte pneumatisch zu fördern. Will man stattdessen im Winter eine Werkshalle beheizen, so kann das der ACA ebenso. Der Abluftstrom des Kühlers beinhaltet bis zu 75% der elektrischen Leistung als Wärme des Gebläses. Damit der Energiegewinn maximal ausfällt bzw. der Kühleffekt möglichst effizient ist, beträgt dessen Druckverlust nur maximal 35 mbar. Zur Überwachung der Funktion ist ein Thermostat integriert, das die Austrittstemperatur der Prozessluft überwacht und mittels einstellbarem Auslösepunkt einen potentialfreien Kontakt schaltet.



Anwendungsbeispiele

- Kühlung der Prozessluft von Gebläsen
 z. B. zur Schüttgutförderung
- Beheizung von Werkhallen

Warmwasser

Bei dem wassergekühlten Nachkühler WRN handelt es sich um einen Rohrbündelwärmetauscher. Hierbei durchströmt die Prozessluft mehrere Kühlrohre, die von Wasser umströmt werden. Das Wasser dient als Kühlmedium bzw. Wärmeträger. Dieser Typ von Wärmetauscher wird für jedes Projekt individuell ausgelegt, damit das Temperaturgefälle der Prozessluft bzw. die Temperaturerhöhung des Wassers genau den Anforderungen entspricht. Um den Druckverlust gering zu halten, der auf Seiten der Gebläse mit mehr Leistungsaufnahme verbunden ist und um einen maximalen Wärmeübergang zu erzielen, werden verschiedene Geometrien von Kühlrohren eingesetzt. Darüber hinaus stehen je nach Güte des Wassers verschiedene Materialien an Kühlrohren zur Verfügung. Der Kühlermantel ist emailliert. Maximal ist eine Wasserrücklauftemperatur von ca. 5 K unter der Eintrittstemperatur der Prozessluft in den Wärmetauscher erreichbar.

Anwendungsbeispiele

- Einbindung in Heizkreisläufe zur Erhöhung der Rücklauftemperatur
- Einbindung in Kreisläufe von Wärmepumpen
- Fußbodenheizung
- Schlammtrocknung

... Gebläse

Technische Daten der Wärmerückgewinnungssysteme ...

Warmluft

Modell	max. Volumenstrom der Prozessluft	max. Druckverlust	max. Volumenstrom des Ventilators ")	Ventilator Strom (400V)	Ventilator Leistung *)	Masse gesamt	Abmessungen B x T x H	Anschluss- nennweite
	m³/min i.N.	mbar	m³/h	Α	W	kg	mm	DN
ACA 53	5	15	1700	0,24	110	58	980 x 650 x 610	50
ACA 88	7	25	1700	0,24	110	58	980 x 650 x 610	65
ACA 130	12	25	3100	0,43	210	97	980 x 650 x 610	80
ACA 165	14	30	3100	0,43	210	97	980 x 650 x 610	100
ACA 235	22	30	6200	0,43 (2x)	210	193	1900 x 850 x 1200	100
ACA 350	30	35	6200	0,43 (2x)	210	199	1900 x 850 x 1280	150

^{*)} bei maximaler Pressung

Einspar-Rechenbeispiel für ACA 350 zur Hallenbeheizung

Gebläse (37 kW)	
Volumenstrom:	30 m³/min
Druckdifferenz:	600 mbar
Eintrittstemperatur:	0 °C
Austrittstemperatur:	+52 °C

ACA 350	
Wärmeabgabe:	25 kW
Lufterwärmung:	2200 m³/h Luft von 0 auf +35 °C
Druckverlust Prozessluft:	35 mbar = 2,2 kW

Kosteneinsparung ca. 16.900 € pro Jahr *

^{*} Berechnung wie bei Schraubenkompressoren für Heizöl-Heizung

... für Gebläse

Warmwasser

Modell	Anschluss- nennweite	max. Volumenstrom Gebläseluft	max. Volumenstrom Warmwasser	Anschlu	Anschlussmaße		Abmessungen		
	DN	m³/min i.N.	m³/h	Luft	Wasser	Ø Mantel	Länge *)	kg	
WRN 50 glatt	125	15	1	DN 125, PN 16	1 ¼	168	1410	71	
WRN 90 glatt	200	30	1,5	DN 200, PN 16	1 ¼	245	1430	145	
WRN 130 glatt	250	42	2	DN 250, PN 10	1 ½	273	1441	225	
WRN 170 glatt	300	57	2,5	DN 300, PN 10	2	324	1441	280	
WRN 250 glatt	350	75	3	DN 350, PN 10	DN 65, PN 16	375	1641	400	
WRN 350 glatt	450	108	3,5	DN 450, PN 10	DN 80, PN 16	450	1649	590	
WRN 450 glatt	500	145	4,5	DN 500, PN 10	DN 100, PN 16	519	1655	690	

 $^{^{\}star}) \;\; {\rm mit} \; {\rm Anschweißgegenflansch} \; ({\rm im} \; {\rm Lieferumfang} \; {\rm enthalten})$

Einspar-Rechenbeispiel für WRN 170 zur Heizungsunterstützung

Gebläse (37 kW)	
Volumenstrom:	30 m³/min
Druckdifferenz:	600 mbar
Eintrittstemperatur:	0°C
Austrittstemperatur:	+52 °C

WRN 170	
Wärmeabgabe:	14 kW
Wassererwärmung:	600 l/h Wasser von +25 auf +45 °C
Druckverlust Prozessluft:	20 mbar (ca. 1.2 kW mehr am Gebläse) = 2 kW

Kosteneinsparung ca. 9.460 € pro Jahr '

 $^{^{\}star}$ Berechnung wie bei Schraubenkompressoren für Heizöl-Heizung

Mehr Druckluft mit weniger Energie

Auf der ganzen Welt zu Hause

Als einer der größten Kompressorenhersteller, Gebläse- und Druckluft-Systemanbieter ist KAESER KOMPRESSOREN weltweit präsent:

In über 140 Ländern gewährleisten eigene Tochterfirmen und Partnerfirmen, dass Anwender hochmoderne, effiziente und zuverlässige Druckluftanlagen und Gebläse nutzen können.

Erfahrene Fachberater und Ingenieure bieten umfassende Beratung und entwickeln individuelle, energieeffiziente Lösungen für alle Einsatzgebiete der Druckluft und Gebläse. Das globale Computer-Netzwerk der internationalen KAESER-Firmengruppe macht das Know-how dieses Systemanbieters allen Kunden rund um den Erdball zugänglich.

Die hochqualifizierte, global vernetzte Vertriebs- und Service-Organisation sichert weltweit nicht nur optimale Effizienz, sondern auch höchste Verfügbarkeit aller KAESER Produkte und -Dienstleistungen.

2-645D Technische Änderungen vorbehalten! .33/23